Intensive management of the European mink, Mustela lutreola

> Life Lutreola 3rd workshop Spain

> > Zaragosa 15. June 2016

Tiit Maran

IUCN/SSC

Content of the Talk

- Current global status of the European mink
- Intensive management:
 - Ex situ conservation
 - Translocations

European mink status

• • •

EU Country highlights: France, Germany, Romania, Estonia

NB! No viable populations in Russia
Documented wild animals
Possibly something survives
Established population
Historical range

Current and historical range

Aire de répartition ancienne du Vison d'Europe en France (1830-1930). (D'après les données de la littérature et les collections muséographiques principalement.)

France

Amink 2000 - 2014

European mink distribution data

Nerz Geschichte

Extinct for 20th century

Release of mink since 2010

 2010 - 2014 some 20 – 30 mink released yearly from breeding station

2015: First record of wild born mink in Germany !!!!

Romania

 \bullet \bullet \bullet

European mink in Danube

The estimate of minimum population size 1000 -1500 ind.

... danger is looming not far

Growing number of mink farms

American mink invasion - almost impossible to reverse once reality

Estonia

 \bullet \bullet \bullet

Status: 1985 - 1991

Last wild specimen in 1996

Status: 2014 - 2016

Intensive management today as tommorrow is too late !!!!

Intensive management – Why?•

Conventional protection measures like area protection and limitations use are not sufficient

Need to think "FREE of STEREOTYPES" !!!!

Ex situ conservation

$\bullet \quad \bullet \quad \bullet$

Management out of natural context

*

Management of small populations

Demography & Genetic diversity

Wild populations, captive breeding and reintroduction programs

Demographic concerns

Effect of Age Structure of future growth...

TYPICAL AIM FOR ZOOS, NOT USUALLY FOR IN SITU ORIENTED PROGRAMS

PRESERVING GENES BROUGHT IN BY FOUNDERS

 $\bullet \quad \bullet \quad \bullet$

Retain 90% of the source gene diversity for 100 years

Rate of genetic diversity loss is determined by the population's Effective Population Size (N_e)

How large to allow natural selection to dominate genetic drift?

Evolution due to:

Full pedigree of European mink captive population in 2006

Review of *ex situ* conservation of the European mink

European mink in captivity - the history

- First records of European mink in captivity:
 - Berlin Zoo: von
 Schmidt, 1865
 - Livland: Löwis 1885, 1886

Breeding in captivity – before or parallel with EEP programme

- First breeding in captivity Moscow Zoo 1933
- Novosibirsk Biological Institute breeding program 1970s – 1990s (Russia)

Astrakhan operation (Russia) 1977 – 1990s – Dr. Moshonkin – STOPPED

- Novisibirsk Zoo (Russia) 1990s 2000s director Shilo STOPPED
- Severtsov Institute of Ecology IEMEZ (Russia) Dr. Rozhnov - STOPPED
- Central Forest Biosphere Reserve (Russia) VI. Katchanovsky – STOPPED
- Ural initiative Dr. Kiseleva ? Stopped

- Dr. Dimitri Ternovski
- Intrageneric hybrids for fur-farming honorik etc
- Founders: Leningrad, Tver, Novgorod, Vologda, Pskov Regions and Estonia
- 19 (9.10) founders
- 1972 1992 1170 (579.582) offspring
- Birth from 119 females and 38 males

Biological institute in Novosibirsk (Russia)

- Results of the activity:
 - Two most comprehesive
 books on mustelid biology in Russian
 - **Reintroduction** efforts in Kuril Islands: **Iturup and Kunshir**
 - Reintroduction efforts in Shingindira River in Tadjiikistan

Census of EEP Population: sex

Census of EEP Population: origin

-

European mink EEP in figures as of 01.06.2016

- Most earlier record from early 20th century
- **EEP** since **1992**
- Total no of individuls recorded: 3067
- No of birth events recorded: 2139
- No of death events recorded: 868
- No of generations in captivity:
 - o Minimum **4,07**
 - o Average 6,6005
 - o Maximum **14,85**
 - Absolute potential maximum 27

EEP population: STATUS

2015

EUROPEAN MINK EEP REPORT (2015)

Institution	Sta (2015	atus -01-0	1)	Bi	rths		C	ONS		Trans	fer EAZ in	ZA	Transf (fer EA out	ZA	Transf EA	fer No ZA in	n-	Trans EAZ	fer Non A out		De	s		Sta (2015-	tus 12-31)	
	М	F	U	М	F	U	Μ	F	U	М	F	U	М	F	U	М	F	U	М	F		N	F	U	М	F	U
Ahtari	2	3	0	0	0	0	0	0	0	0	0	0	1	2	0	0	0	0	0	0	0		0	0	1	1	0
Bojnice	2	2	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	3	2	0
Calviac	2	3	0	0	0		0	0	0	1	0	0	0	0	0	0	0	0	0		ç	1	0	0	2	3	0
Chomutov	1	0	0	0	0	0	0	0	0	1	1	0	1	0	0	0	0	0	0	د		0	0	0	1	1	0
Decin	0	1	0	0	c	0	0	0	0	1	1	0	0	0	0	0	0	0	0	0	J	1	1	0	0	1	0
Euronerz	33	28	0	16	13	11	0	0	0	0	0	0	0	0	0	0	0	0	11	_7	2	11	11	9	27	23	0
Helsinki	1	1	0	0	0	0	0	0	0	1	1	0	0	0	0	0	0	0	0		0	0	0	0	2	2	0
Kerkrade	1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0		0	0	0	0	1	0	0
Pavlov	3	3	0	0	0	0	0	0	0	0	1	0	2	2	0	0	0	0	0	0	0	1	0	0	0	2	0
Poznan	1	1	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	0	0	0	0	1	0	1	1	0
Ranua	1	0	0	0	0	0	0	0	0	0	1	0	0	0	0	0	0	0	c	0	0	0	0	0	1	1	0
Riga	2	6	0	0	0	0	0	0	0	2	0	0	0	0	0	0	0	0	<u></u>	0	0	0	1	0	4	5	0
Tallin	66	39	0	31	23	1	0	0	0	1	0	0	5	3	0	0	0	0	21	20	0	5	3	1	67	36	0
Zoodyssee	0		0	0	0	0	0	0	0	1	1	С	0	0	0	0	0	0	0	0	0	0	0	0	1	1	0
	11	87	0	47	36	12	0	0	0	9	7	0	9	7	0	0	0	0	32	27	2	19	17	10 1	otal		
	2	7																					5		111	79	0
Sachsen	2	2																					2	C	ross-che	eck 🗧	┛
Wisentgeh	1	0_																							111	79	0

Release +

Surplus

Age ja sex pyramid as of 2015

Demographic Summary

Life Expectancy	5,0	
30 day mortalit	y 0,0	5 (N=1958)
25% live to	7,2	
10% live to	8,8	
5% live to	9,7	
1% live to	∞	
Oldest living	11,7	(ID:1450)
λ 1,309		
r 0,269		
R0 1,830		
T 2,2 yea	rs	
Average li	itter	size in 2016 – 5

,4

Genetic Summary

Founders

Potential (additional) Founders 0 Living Animals Living Descendants % Ancestry Known % Ancestry Certain **Gene Diversity Population Mean Kinship** Gene Value Founder Genome Equivalents Founder Genomes Surviving Potential Gene Diversity **Mean Inbreeding** Ne/N

22 222 199,96 90% 90% 0,9314 0,0686 0,9315 7,29 10,94 0,9543 0,0901 0,3380

Genetic parameters of EEP population

Population Goal

Retain 85% of the Gene Diversity for 50 years

Population Variables:

Generation Length; 2,2 Maximum potential lambda; 1,3089 Current N; 222 Current Ne; 75,0 Ne/N; 0,34 Current Gene Diversity; 0,9314 Maximum N; 400 No founders added You can exceed goals and maintain 85,6% You can maintain over 85,0% for up to 54 years

Few insights to *ex situ* management

Estonia and France

ESTONIA: The story dates back to 1980s

Fo

Problems areas in EEP

• • •

. . . .

Problem-areas in conservation breeding of European mink

- Male problem- hyper-aggressive/passive males
- Not enough space (445 animal-spaces needed only around 200 - 250 available.
- Genetic features of French-Spanish and Eastern European populations
- What to do with "unneeded" surplus mink?

Age	class	Belarus	NW Russia	Captive population			
0.	-1	30%	36,6%	18,1%			
1.	-3	48%	30,8%	30,8%			
3.	-4	12%	17,2%	17,2%			
	4-7		\frown	23,8%			
4<	7-9	10%	15,4%	33,9% 7,9%			
	9-11	Č		2,2%			

Male issue

- Most of the males tend to be abnormally aggressive or passive
- Only some 20 -30% of males are mating normally mate (1998 – 2009)
- Cause unknown:
 - not hormonal, not a sperm quality, not enclosure size etc
 - Have something to do with management
 - Possibly multiple factors behind this
- Two males re-trapped in Hiiumaa in 2004 were not able to mate the effect of "stress irreversible" ???

Fig. 1. Wild and captive born male European minks with successful breedings at least once in their lifetime.

Implications of the male issue

Figure 1. Factorial Correspondence Analysis plot performed by Genetix program. Blue, yellow and white squares represent individuals from the three populations tested, wild, Russian and Belarus, and captive ones, respectively.

CAPTIVE POPULATIONS DIFFERENTIATES FROM WILD SOURCE POPULATION - WHY?

Inbreeding coefficients of males and females in Tallinn population

Gene diversity of males and females in Tallinn population

Insufficient space

To Retain 85,00 of the Gene Diversity at the end of 50 years

Population Variables:

Generation Length; 2,2 Maximum potential lambda; 1,3089 Current N; 222 Current Ne; 75,0 Ne/N; 0,34 Current Gene Diversity; 0,9314 Maximum N; 400 No founders added You can exceed goals and maintain 85,6% You can maintain over 85,0% for up to 54 years

= Total 360
!!!! Still missing some 40 spaces

Solution: One program for Europe

EAZA EU Life project to prepare all-European master plan and to increase interest in zoo community: 2016 - 2017.

Wild mink genetics Cabria, 2015

Table 2 Genetic variability estimates for eleven microsatellite loci tested in the European mink datasets I^a and II^b . The variable provided are: number of individuals tested (n), number of total alleles (N_A), the total private allele (P_A) with the corresponding percentage in brackets, allelic diversity (A), observed and expected heterozygosities, H_O and H_E respectively, and mean F_{IS} (Wright's statistic)

Sampling sites	n	N _A	P _A (%)	А	Ho	H _E	FIS				
All individuals tested	313	64	—	5.818	0.430 ± 0.113	0.578 ± 0.148	0.255				
Microsatellite dataset I											
East (North and South)	151	61	32 (52.46 %)	5.546	0.532 ± 0.150	0.618 ± 0.156	0.141				
Northeast	107	59	20 (33.90 %)	5.364	0.559 ± 0.153	0.613 ± 0.164	0.089				
Russia	88	57	13 (22.81 %)	5.182	0.569 ± 0.151	0.619 ± 0.159	0.082				
Belarus + Estonia	19	42	2 (4.76 %)	3.818	0.503 ± 0.230	0.54 ± 0.207	0.095				
Southeast(Romania)	44	35	2 (5.71 %)	3.182	0.464 ± 0.170	0.496±0.139	0.065				
West	162	32	3 (9.38 %)	2.909	0.336 ± 0.161	0.439 ± 0.201	0.236				
France	73	29	1 (3.45 %)	2.636	0.389 ± 0.182	0.430 ± 0.206	0.095				
Spain	89	29	1 (3.45 %)	2.636	0.291 ± 0.184	0.353 ± 0.215	0.178				
Microsatellite dataset II					Solutions						
North Dvina	40	54		Lah	conctic stud	3 7					
West Dvina 28		47	Lab genetic study								
Volga	39	51	Or								
Charentes 9		25	Using hypotetical layer in analyses								
Garonne 44 33		33	with decreased gene diversity for western animals								
Adour	23	26			Or						
Cantabrian rivers	16	25			Both						
Ebro	73	29		2.050	0.205 ± 0.105	0.557 ± 0.210	0.155				

^aBecause of the low number of samples from Estonia, this locality was analyzed in combination with individuals from Belarus ^bResults for the Danube river correspond to those obtained for the southeastern region

Learning points from European mink EEP management

Long-term commitment

Collaborative management in Europe Male issue CRITICAL

Local solutions have to be found to the surplus issue

Always priority to ex situ in intensive management

Genetic issue between east and west

Translocations

Intensive management action

History of European mink translocations

2008 – 2010 : Alava in Basque country 27 captive born mink released as experiment 1982 - 1986: 11 mink were released to Valam Island in Laadoga Lake. No results

> 1981 – 1989 388 mink released: Islands Kunashir ja Iturup. Results unclear: probably no population

Since 2000 > 500 mink were released in Hiiumaa Island in Estonia (as of 2010) Island population in place

2006 – 2008 75 mink releaseed in Saarland (Germany). No outcome

Steinhunder Meer (Lower Saxony) release for 2013 60 mink released Wild birth in 2015

1988 108 individuals were: Shingindira River in Tadjiikistan. Results unknown

IUCN Guidelines for Keintroductions and Other Conservation Translocations August 2012

<u>Translocation</u>: the human-mediated movement of living organisms from one area with release in another,

Conservation translocations must have <u>conservation benefit</u> as primary objective

Key principles:

- 1. Ensure translocation is the best solution amongst alternatives,
- 2. <u>Assess risk</u>,
- 3. If substantial risk or uncertainty remains, don't translocate,
- 4. Monitor and manage adaptively.

Translocation in Estonia

 \bullet \bullet \bullet

Since 2000

Getting rid of the American mink (1998-2000)

Mortality after release

Causes of death (N=22)

- Predators caused a large proportion (>75%) of all the recorded deaths.
- Although predators are the proximate cause of death, the ultimate causes may be a syndrome of maladaptations.

Adapation to the wild: five cases

Expected natural yearly mortality > 30%, mostly winter

Status of Hiiumaa established population

Status 2014 - 2016

2016 - **75 %** of lifetrapped mink - **wild-born Mink** can be found basically **everywhere**: - in very small streams,

- even in human settlements;

In 2014, mink have preyed on hens in farms

2014 ja 2015: number of mink surviving winter miinimum 40 – 60

2016: winter-surviving no of mink much higher - 80?

Litter of wild mink in trailcamera

IT IS POSSIBLE!! There is a wild population established in Hiiumaa Island

Think **out of box:** Introduction? /re-introduction?/ risk assessments !

Be focussed, do less, but better

Long-term commitment: planning, monitoring etc

Do not give up with first strikebacks, learn from those "I know nothing except the fact of my ignorance". Socrates

Keep people informed and ... interested

Keep process simple and flexible
Challenge of knowing and of unknowing

"There are **known knowns**, there are things we know that we know. There are **known unknowns**, that is to say, there are things that we now know we don't know. But there are also **unknown unknowns** – there are things we do not know we don't know."

... and there are false knowns !!!!!

THANK YOU !!!!

Photos: Tiit Maran, except: Slide 35: A.Saveljev Side 47: B&W – T. Talpsep Slides 9-11: Ökologische Schutzstation Steinhuder Meer e.V Slides 22 – 25 and 29 by J.D.Ballou